У современных учёных существует несколько гипотез происхождение шестидесятеричной системы, наибольшего внимания заслуживают следующие:
Гипотеза Тюро-Данжена: основой для возникновения шестидесятеричной системы послужила шумерская десятирично-шестеричная система, безусловно, появившаяся раньше первой. Обе эти системы имеют генетическое родство: основания в шумерских системах —10 и 6, а в вавилонской—60=10*6. Выбор в качестве системы счисления числа 10 у шумеров, как и у всех других народов, естественно, связан с пальцевым счётом. Выбор числа 6 в качестве другого основания также обусловлен пальцевым счётом, но только имеющем свою особую технику. Различные вычисления, в том числе умножение и деление, при наличии двух оснований было производить сложно, поэтому древний математик, фиксируя промежуточные результаты умножения и деления, решил перейти к новой системе с одним основанием.
Гипотеза профессора И. Н. Веселовского: основание 60 появилось в результате особого пальцевого счёта. Рассмотрим ладонь левой руки. Пусть каждая фаланга большого и указательного пальцев = 10 (5 фаланг—в сумме = 50), а остальные фаланги пальцев (их 9)— по единице. Тогда все фаланги в сумме дают 59, а ещё вся рука —60. На правой руке всё увеличиваем в 60 раз, тогда на обеих руках получим 3600=602. Такую гипотезу автор выдвинул исходя из способа, которым русские купцы в старину между собой обозначали стоимость тайной сделки с помощью пальцев рук, засунутых друг другу в широкие рукава кафтанов. Позиционный принцип записи автор объяснял использованием абаки (счётной доски с камешками). Следует заметить, что существование абаки у вавилонян не подтверждено (хотя, несомненно, счётные инструменты у них были), поэтому и его гипотезу инструментального происхождения позиционности системы пока нельзя проверить.
Гипотеза О. Нейгебауэра : после аккадского завоевания шумерского государства там долгое время одновременно существовали две денежно-весовые единицы: шекель (сикль) и мина, причём было установлено их соотношение 1 мина = 60 шекелей. Позднее это деление стало привычным и породило соответствующую систему записи любых чисел в вавилонской математике.
По мнению нашей команды, более вероятна гипотеза профессора И. Н. Веселовского, потому что практически каждый может представить её на своих собственных руках. А рассуждая по психологии, человек верит наглядным вещам больше, чем гипотетическим.
Вавилонские математики широко пользовались шестидесятеричной позиционной(!) системой счёта. На её основе и были составлены различные вычислительные таблицы. Кроме таблиц умножения и таблиц обратных величин, с помощью которых производилось деление, существовали таблицы квадратных корней и кубических чисел.
Клинописные тексты, посвящённые решению алгебраических и геометрических задач, свидетельствуют о том, что вавилонские математики умели решать некоторые специальные задачи, включавшие до десяти уравнений с десятью неизвестными, а также отдельные разновидности кубических уравнений и уравнений четвёртой степени. Квадратные уравнения вначале служили, в основном, сугубо практическим целям – измерению площадей и объёмов, что отразилось на терминологии. Например, при решении уравнений с двумя неизвестными, одно называлось «длиной», а другое – «шириной». Произведение неизвестных называли «площадью». Как и сейчас! В задачах, приводящих к кубическому уравнению, встречалась третья неизвестная величина – «глубина», а произведение трёх неизвестных именовалось «объёмом». В дальнейшем, с развитием алгебраического мышления, неизвестные стали пониматься более абстрактно.
Иногда в качестве иллюстрации алгебраических соотношений в Вавилоне использовались геометрические чертежи. Позже, в Древней Греции они стали основным элементом алгебры, тогда как для вавилонян, мысливших, прежде всего, алгебраически, чертежи были лишь средством наглядности, и под терминами «линия» и «площадь» чаще всего понимались безразмерные числа. Потому-то и встречались решения задач, где «площадь» складывалась со «стороной» или отнималась от «объёма» и т.п..
Особое значение имело в древности точное измерение полей, садов, строений – ежегодные разливы рек приносили большое количество ила, который покрывал поля и уничтожал межи между ними, и после спада воды землемерам по заказу их владельцев частенько приходилось вновь перемеривать наделы. В клинописных архивах сохранилось немало таких землемерных карт, составленных свыше 4 тыс. лет тому назад.
Первоначально единицы измерения были не очень точными, ведь длину измеряли пальцами, ладонями, локтями, которые у разных людей разные. Получше обстояло дело с большими величинами, для измерения которых пользовались тростником и верёвкой определённых размеров. Но и здесь результаты измерений нередко различались между собой, в зависимости от того, кто мерил и где. Поэтому в разных городах Вавилонии были приняты разные меры длины. Например, в городе Лагаше «локоть» был равен 400 мм, а в Ниппуре и самом Вавилоне – 518 мм.
Многие сохранившиеся клинописные материалы представляли собой учебные пособия для вавилонских школьников, в которых приводились решения различных несложных задач, часто встречавшихся в практической жизни. Неясно, правда, решал ли ученик их в уме или делал предварительные вычисления прутиком на земле – на табличках записаны только условия математических задач и их решение.